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Abstract

In this thesis, we examine the alignment between Brightest Cluster Galaxies

(BCGs) and the orientation of their clusters. In particular, we are aiming to determine

whether their alignment is dependent on redshift, which other studies (discussed in

the introduction) have suggested. To do this, we use the Hyper Suprime-Cam (HSC)

s18a v2 catalogue to analyse 13373 clusters at 0.1 < z < 1.2. We then calculate

the axial ratio and the orientation angle for both the BCGs and their host clusters.

The initial results using these 13373 clusters show no correlation between alignment

and redshift. We then impose certain criteria, selecting clusters with a large enough

cluster size and a low enough redshift due to uncertainty in those objects (N > 30,

z < 0.8), as well as the imposition that the BCG must have an axial ratio far enough

from unity so that it has a well-defined orientation (α < 0.8). Doing so still reveals

no evidence for alignment at all, and certainly no evidence for redshift dependence.

We additionally find no correlation between dominance and alignment. Further work

is recommended to assess if there are any statistical or technical problems that may

be affecting these results, as well as a more thorough review of the prior evidence

suggesting that there is a redshift dependence.
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Chapter 1

Introduction

In this paper, we aim to investigate the relationship between the alignments of

clusters and their Brightest Cluster Galaxies (BCGs). In particular, we wish to

investigate whether there is an alignment between BCGs and their clusters (an

effect known as the Binggeli effect), and to examine whether this alignment is

redshift-dependent.

A typical BCG is located close to the centre of its host cluster, and hence probably

lies at the bottom of the gravitational potential well of its cluster. BCGs have

different properties from non-BCGs, for example, BCGs are larger and have higher

velocity dispersions (Von der Lindern et al, 2007), exhibit photometric and colour

homogeneity, have high luminosities ≈ 10L∗, and often have disturbed

morphologies. These differences suggest that the galaxy formation process differs

between BCGs and non-BCGs.

The relationship between the orientation of Brightest Cluster Galaxies (BCGs) and

that of the clusters over time is a significant aspect of understanding the cosmology

of our universe. Various cosmological simulations indicate that there is a

relationship between clusters and their constituent galaxies (Dubinski 1998), more

specifically, predicting a relationship between their orientations. There are

additionally a plethora of studies that there are alignments between other structures

in the universe, including between galaxies and clusters (Hashimoto, Henry &

Boehringer, 2008) and galaxies within groups (Wang et al. 2008).

There are two main hypotheses regarding the Binggeli Effect. The first argues that
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it is a result of the formation process of BCGs and their clusters: both are formed in

a preferred direction along filaments. The argument behind the first hypothesis

stems from analysis of N-body simulations. For example, in Dubinski et al. (1998),

an N-body simulation for galaxy merging generated a large central galaxy with

surface brightness and velocity dispersion profiles similar to those of observed

BCGs. The galaxy is a flattened, triaxial object whose long axis aligns with the

primordial filament, suggestive that the alignment shouldn’t change over time, and

corresponds to predictions in prior papers. The second argues that tidal interactions

cause the alignment of the BCG with the cluster. As noted by Ciotti & Dutta

(1994), the timescale in which a galaxy is affected by the tidal field of its host

cluster is far shorter than the Hubble time. This suggests that if tidal interactions

play a significant role in aligning the BCG with its host cluster, then the alignment

of the BCG will vary with respect to redshift. More specifically, one would expect

the alignment to be weaker at higher redshift.

Former observational studies have demonstrated a relationship between the

alignments of BCGs and clusters. The first example was Binggeli (1982). More

recent studies have included Kim et al. (2002), Donoso et al. (2006), and Siverd et

al. (2009), all of which have demonstrated evidence of the Binggeli effect to some

degree. There are additionally a small number of early papers that suggest that

there is no such alignment as suggested by Binggeli, such as Struble & Peebles

(1985), instead suggesting that the effect may be explained by systematic errors.

However, it is to be noted that the sample sizes used in these early papers is rather

small; for instance, Struble & Peebles (1985) used a sample of 237 clusters. Another

example of a paper that provided a negative result was Ulmer et al. (1989), which

had similar shortcomings.

One of the most recent papers on this topic is Niederste-Ostholt et al. (2010), which

uses SDSS Data Release 6 to study the alignment effect in 12755 clusters extending

out to z = 0.44 in order to show that BCGs are preferentially aligned. This study

also investigates other aspects related to the Binggeli effect, concluding that rich

clusters show a stronger alignment than do poor clusters at the 2.3σ level; that

low-redshift clusters (defined as z < 0.26) show more alignment than do

high-redshift (z > 0.26) clusters, with a difference significant at the 3.0σ level; and

that there is a correlation between BCG dominance (defined as the difference in the

magnitude of the BCG and the mean magnitude of the second and third-ranked

galaxies) and cluster alignment. Using the recent data release from the Hyper
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Suprime-Cam (HSC, discussed in Chapter 2), it is now possible to use a larger

sample size with higher-z clusters to provide further analysis of the Binggeli effect,

up to approximately z = 1.2. This provides to us the opportunity to build upon the

work of these prior papers.

One of the most recent demonstrations of the Binggeli effect that is relevant to this

thesis was given by West et al. (2017). West et al. (2017) uses HST (Hubble Space

Telescope) measurements of 65 distant clusters (up to z ≈ 1.3) and finds evidence

for the alignment of BCGs and clusters. However, the authors do not find evidence

for this alignment having any redshift dependence. Another useful paper is Donahue

et al. (2016) who showed that BCG-cluster alignment is preserved independent of

the means of measurement. More specifically, if the Binggeli effect was observed

using gravitational lensing, then it was also observed using X-rays or the

Sunyaev-Zel’dovich effect.

There is additionally a strong theoretical case for the Binggeli effect. Faltenbacker

et al. (2002) used an N-body simulation with a ΛCDM model to show that the

Binggeli effect is detected up to 100h−1Mpc. Furthermore, Onmora & Thomas

(2000) used simulations of 5123 dark matter particles to investigate alignments of

galaxies with their nearest neighbour galaxies, as well as between clusters within a

supercluster. This paper found that under the ΛCDM framework, the Binggeli

effect is present up to 30h−1Mpc. They also note that a diminished (i.e: holding for

smaller distances) Binggeli effect is seen under alternative cosmological models,

including tCDM, sCDM, and OCDM. Throughout this paper, we assume an

Ωm = 0.28, Ωλ = 0.72 and H0 = 70 km s−1 Mpc−1 cosmology (i.e: a flat ΛCDM

cosmology) that is assumed in the production of the cluster catalogue used in this

paper (Oguri et al. 2014). However, the ΛCDM parameters are not explicitly used

in this thesis.
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Chapter 2

Hyper Suprime-Cam

The Hyper-Suprime Cam (HSC) is a wide-field imaging camera on the 8.2m Subaru

telescope located on Mauna Kea in Hawaii. The 1.5m diameter of the camera

provides a large field of view (≈ 1.77 deg2), whilst the location minimises any

atmospheric disturbance because as it is at a higher altitude, there is less

atmospheric turbulence occurring between the flux source and the telescope,

reducing astrophysical ’seeing’. Additionally, the location of HSC near an ocean

favours the generation of laminar flows over the mountain, which further reduces

seeing, and reduces the problem of cloud cover. Overall, this makes HSC an

excellent tool in astronomy for data collection.

The HSC survey is detailed extensively in Aihara et al. (2018). The survey

comprises three layers: Wide, Deep and UltraDeep. In order to have a large sample

size, this paper focuses on using data from the Wide Layer, which will cover 1400

deg2 in five bands: grizy (Oguri et al, 2018). grizy refers to the set of five

broadband filters where each filter is designed to best observe a certain wavelength

range. g and r correspond roughly to ’green’ and ’red’ wavelengths in the visible

range of electromagnetic (EM) radiation, whilst i, z, and y correspond to parts of

the near-infrared range of EM radiation. Figure 2.1 illustrates the coverage of the

filters over the EM spectrum for HSC. As of the S18a release, 305 deg2 has been

mapped in the Wide field.
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Figure 2.1: A figure showing the coverage of the grizy broadband filters for HSC, as well as 4
other narrow-band filters. The response of the five filters is given as a function of the wavelength,
assuming an airmass of 1.2. Taken from Aihara et al. (2018).

The use of the HSC offers a number of advantages over previous surveys such as the

SDSS. Primarily, using the Wide Layer of the HSC provides galaxy data up to

z = 1.2, whereas the SDSS survey (as detailed in York et al., 2000) provided

considerably less, up to z ≈ 0.6. This is because the limiting magnitude of HSC in

the Wide field is ≈ 26, whereas for SDSS it is much lower at ≈ 22.5, meaning that

HSC is much more sensitive to fainter objects (which naturally tend to be at a

higher redshift). Furthermore, the ’seeing’ of HSC given by the Full-Width

Half-Maximum (FWHM) is 0.6”, compared to SDSS which is 1.2”, which means

that the images from HSC are of a higher resolution and thus HSC is better for

distinguishing between two close objects.

In order to investigate the alignment of clusters and BCGs, we use the HSC s18a v2

catalogue complied by Oguri et al. (2018). This catalogue is a set of 600333 galaxies

making up 13373 distinct clusters, with a range 0 < z < 1.2. The catalogue includes

the Right Ascension and Declination (denoted RA and DEC in this paper

respectively) of each galaxy and the RA and DEC of the central galaxy in the
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cluster of that galaxy, which Oguri et al. (2014) considers to be the BCG.

Additionally, values are given for the redshift (z); the mask-corrected richness of the

cluster (Ncor, as defined in Oguri et al. 2014); log(M∗) which is the logarithm (base

10) of the mass of the galaxy in solar masses; and w the probability that a galaxy is

a member of its catalogue cluster (also defined in Oguri et al. 2014).

For this catalogue, z is a photometric redshift. Whilst spectroscopic redshifts are far

more precise, they are time-consuming to acquire, and thus impractical for large

surveys such as HSC. Instead photometric redshifts are found, which measures the

average intensity in different broad color filters (grizy) to obtain the redshift.

Figure 2.2 gives the relationship between spectroscopic and photometric redshift

values. They correlate well for the most part, showing that the measured

photometric redshifts are a good measure of the actual redshifts of the galaxies, and

thus are good for data analysis. However, this correlation weakens just above

z ≈ 0.8 and thus we must be more cautious when drawing conclusions about trends

at higher redshifts because these redshifts are less certain.

The precise definitions of Ncor and w given in Oguri et al. (2014) are relatively

complicated. In brief, Ncor is a corrected measure of the richness of the galaxy

which depends on factors such as the position and redshift of the galaxies, as well as

a constraint on the mass of the galaxies to ensure the luminosity is not abnormally

high or low, a constraint on the radial distance of galaxies from the centre to ensure

galaxies are not too far away from the centre and that the number density falls away

as a function of the radius, and a masking correction. w is a membership probability

calculated with similar considerations, considering the number density parameter,

mass and radius filters, and the distance of the galaxy from the BCG. For

completeness, further explanations on the definitions are outlined in Appendix 1.
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Cluster (28.657270, -4.618727)
RAcent DECcent Ncor z RAgal DECgal log(M∗) w
28.657270 -4.618727 19.4040 0.564 28.668192 -4.657918 10.796 2.055799e-01
28.657270 -4.618727 19.4040 0.564 28.673328 -4.647884 10.803 3.367180e-01
28.657270 -4.618727 19.4040 0.564 28.668973 -4.637765 10.237 6.205157e-02
28.657270 -4.618727 19.4040 0.564 28.654660 -4.620519 10.388 1.00000e+00
28.657270 -4.618727 19.4040 0.564 28.674181 -4.666619 11.518 4.127302e-01
28.657270 -4.618727 19.4040 0.564 28.655106 -4.656679 10.494 6.518541e-02
28.657270 -4.618727 19.4040 0.564 28.664746 -4.653307 10.528 1.544849e-03
28.657270 -4.618727 19.4040 0.564 28.667236 -4.651917 10.049 5.614103e-03
28.657270 -4.618727 19.4040 0.564 28.671906 -4.650688 10.108 3.003528e-02
28.657270 -4.618727 19.4040 0.564 28.622938 -4.648751 10.739 9.959142e-02
28.657270 -4.618727 19.4040 0.564 28.669303 -4.642991 11.775 7.805720e-01
28.657270 -4.618727 19.4040 0.564 28.667946 -4.644180 11.416 9.054012e-03
28.657270 -4.618727 19.4040 0.564 28.673426 -4.644900 11.220 1.074490e-02
28.657270 -4.618727 19.4040 0.564 28.668912 -4.639457 11.077 9.263790e-01
28.657270 -4.618727 19.4040 0.564 28.672371 -4.643379 11.086 1.00000e+00
28.657270 -4.618727 19.4040 0.564 28.672256 -4.642879 10.529 5.133334e-01
28.657270 -4.618727 19.4040 0.564 28.669748 -4.642602 11.182 1.753872e-01
28.657270 -4.618727 19.4040 0.564 28.684918 -4.642483 10.908 4.998017e-01
28.657270 -4.618727 19.4040 0.564 28.674654 -4.641032 11.433 5.570905e-01
28.657270 -4.618727 19.4040 0.564 28.708402 -4.639560 10.850 8.993032e-03
28.657270 -4.618727 19.4040 0.564 28.636033 -4.638514 10.653 7.300468e-03
28.657270 -4.618727 19.4040 0.564 28.685163 -4.637590 10.398 5.200606e-02
28.657270 -4.618727 19.4040 0.564 28.670670 -4.638296 10.276 8.872315e-03

Table 2.1: This table lists the galaxies are given in the first cluster of the Oguri et al. catalogue.
It shows the eight values given in the catalogue.
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Figure 2.2: Taken from Oguri et al. (2016). (Top) This graph shows the relation between spec-
troscopic redshift (zBCG,spec) and photometric redshift (zcl). The motivation for this is as follows:
In order to check the accuracy of zcl, Oguri et al. (2016) cross-match the HSC Wide S116A cluster
catalog with the spectroscopic galaxy catalogue to collect 843 clusters that have spectroscopic red-
shifts. By comparing the two redshift values, Oguri et al. (2016) find that the photometric redshift
values are accurate because they are similar to the spectroscopic redshift values, although it should
be noted that the uncertainty increases with higher photometric redshift. (Bottom) This graph gives
the residual

zcl−zBCG,spec

1+zBCG,spec
for all clusters to find the bias and scatter, denoted δz and σz respectively.

For the s16a data, Oguri et al. (2016) finds values of δz = −0.0013, σz = 0.0081. One should note
that the s18a data set is simply a larger data set that includes the s16a data set, which suffers from
the same uncertainty in redshift.
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Chapter 3

Analysis

3.1 Cluster Parametrisation

The position of each galaxy in each cluster is given by its Right Ascension (RA) and

Declination (DEC), as shown in Table 2.1. In order to calculate values for the axial

ratio (α) and angular orientation (φ) of a cluster, it is necessary to convert from

(RA, DEC) to an (x,y) coordinate system, in essence mapping the celestial sphere

onto a flat surface. For simplicity, when analysing each cluster, we set the cluster

centre as the origin (x=0, y=0). To do this, one can simply map DEC → x.

However, one must introduce a correction factor when mapping RA → y, as one is

mapping a non-Euclidean surface to a Euclidean surface. As such, the conversion for

each cluster is as follows:

x = (RA−RAmean) · cos(DECmean) (3.1)

y = DEC −DECmean (3.2)

where, for i = 1, 2, ..., n

RAmean =

∑n
i=1RAi
n
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DECmean =

∑n
i=1DECi
n

With the coordinate conversion complete, we can begin to find α and φ of each

cluster. To do this, we follow the method utilised by both Kim et al. (2002) and

Niederste-Ostholt et al. (2010), which use the principle of second moments to find α

and φ.

Mxx = 〈x
2

r2
〉 (3.3)

Mxy = 〈xy
r2
〉 (3.4)

Myy = 〈y
2

r2
〉 (3.5)

where x and y represents the respective distances of a given member galaxy from

the cluster centre defined in the equatorial coordinate system, and r2 = x2 + y2.

One can then define the Stokes parameters as follows to find α and φ:

Q =
1− α
1 + α

cos(2φ) = 2Mxx − 1 (3.6)

U =
1− α
1 + α

sin(2φ) = 2Mxy (3.7)

From this, if one defines D =
√
Q2 + U2, one can calculate α and φ as follows:

α =
1−D
1 +D

(3.8)

φ =
1

2
arctan(

U

Q
) (3.9)

One should note that there is a degree of uncertainty in these measurements. For

instance, the uncertainty in Q and U is given by:

σQ =

√
2

N(N − 1)
Σ(
x2

r2
− 〈x

2

r2
〉)2 (3.10)
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σU =

√
2

N(N − 1)
Σ(
xy

r2
− 〈xy

r2
〉)2 (3.11)

Additionally, it is necessary to standardise the angle of the cluster and the angle of

the BCG such that they are both measured from the same half-line. We take the

East direction to be the half-line at which θ = 0, with an angle range from

0 < θ < 180. Note that this goes only goes through half a circle due to redundancy

(i.e: an angle from -180 to 0 is expressible as a corresponding angle from 0 to 180

from the other side).

Figure 3.1: (Left) An example of a plotted cluster map, (RA,DEC) = (37.20747, -6.423215). Here
we are plotting the positions of each galaxy of the cluster. One should note that this is a particularly
elongated cluster, and Figure 3.6 will later show that this is not the norm; the majority of clusters
are relatively well-rounded. Looking at elongated clusters can be particularly useful as it is easy to
judge the value of φ by eye, and thus check if the code to calculate φ is returning the correct value.
(Right) The same cluster map with the Euclidean correction, now centered at the origin. For this
cluster, we calculate α = 0.14546, φ = 171.6o.

Figure 3.2: For completeness, the above maps show a rounded cluster, which is more commonly
seen in the data set. The RA-DEC coordinates for this cluster are (32.79381, -4.344772), and we
calculate α = 0.84817, φ = 11.4o. (Left) Before the Euclidean transform. (Right) After the Euclidean
transform.
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Figure 3.3: This shows the HSC Map centered on the cluster at (37.20747, -6.423215). The HSC
map is a colour-corrected map with all images in this paper being a composite of exposures in three
filters: g, r, i. Here, the members of the cluster are indicated with green circles. This matches
with the positions found in Figures 3.1 and 3.2, and is a useful check that the code is functioning
correctly.

3.2 Cluster Parametrisation with Membership

Probability

We calculate two values for α and φ, the first set without using the membership

probability (w) as weights, as detailed above. The second set uses the membership

probability as weights in order to avoid significant distortion of results from galaxies

with a low probability of being in the cluster. The methodology is similar to the

above unweighted method, expect for the following:

Firstly, the calculation of the arithmetic mean is altered to include the weights, as

follows:

RAmean =

∑n
i=1RAi · wi

Σwi

DECmean =

∑n
i=1DECi · wi

Σwi

Additionally, the moments are also calculated to include the weights:

Mxx =
Σx2

r2
· wi

Σwi
(3.12)
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Mxy =
Σxy
r2
· wi

Σwi
(3.13)

Myy =
Σy2

r2
· wi

Σwi
(3.14)

The Stokes parameters are then calculated in the same way as detailed above, and

so are α and φ. In cases where there is ambiguity, we denote unweighted alpha as α,

and weighed alpha as αw. The same convention applies for φ and φw.

Figure 3.4: This is a histogram of the probability weights (w) given by the Oguri catalogue. As
shown, there are a large number of galaxies that have a very low-probability of being in the cluster
(0 ≤ w ≤ 0.1). To deal with these objects, we use the weighted method as discussed in Section 3.2.)

The motivation for using the weights comes from Figure 3.4, which shows a high

number of low probability galaxies in the cluster catalogue. By using the weighted

approach, we minimise the possibility that low probability galaxies could affect the

values of α and φ.

3.3 Data Set Analysis

First of all, it is useful to conduct analysis upon the cluster catalogue itself to

understand its various properties and to see if they conform to our expectations.
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Figure 3.5: (Left) A scatter plot showing the relationship between the cluster size, and its redshift.
The cluster size here is defined as the number of galaxies in each cluster, with no other correction.
The probability weights are not used in the consideration of cluster size. Regression analysis in-
dicates that the cluster size decreases with increasing redshift. (Right) A scatter plot showing the
relationship between Ncor and z.

For this data set, the cluster size approximately decreases with increasing z (Fig.

3.5), although this decrease is rather modest. For clarity, cluster size is defined here

simply as the number of galaxies in a given cluster, with no consideration of the

probability weights.

Additionally, one can observe from Figure 3.6-3.8 various features regarding the

axial ratio of the clusters against the cluster size, against Ncor, and a comparison of

the weighted axial ratio vs. the regular axial ratio. One notes that there are a

number of very elongated clusters (α < 0.3) shown in these figures. However, these

low-α clusters tend to have a low sample size which is to be expected, as for a low

sample size it is more likely that an individual galaxy in the cluster can distort the

elliptical shape of the cluster significantly, making it more elongated. Furthermore,

examining some of these clusters using the HSC map shows that these clusters are

indeed elongated (such that the values of α seem by eye to be correct). The same

general principles outlined above can be applied to the Ncor graphs as well,

suggesting that there are no problems with these graphs.

However, Figure 3.8 shows that there is can be a significant difference between the

value of α and the value of αw for a cluster. This suggests that there are a large

number of clusters where galaxies with a low-probability (w < 0.5) of being in the

cluster are affecting the shape of the cluster significantly. This implies that using

the weighted approach is better for our data analysis.
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Figure 3.6: Graphs showing the size of each cluster against α and αw. The graphs indicative
that in both methods of calculating α, there are few clusters that are very elongated (α < 0.3).
Furthermore, those elongated clusters tend to be of a low cluster size. There is no drastic change
between the graphs when the weighting by probability w is implemented.

Figure 3.7: Graphs showing the Ncor value from the Oguri catalogue for α and αw. Ncor is
effectively another measure of cluster size with some corrective factors. We note that nothing seems
problematic in these graphs.

Figure 3.8: A plot showing α vs. αw (weighted). This shows more clearly the difference between
the two graphs in Figure 3.5. There will clearly be a difference in results throughout this paper
based on whether the probability weights are used.
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Figure 3.9: (Left) The scatter graph shows the distribution of the axial ratio of each cluster over
redshift. (Right) The graph shows the distribution of the weighted axial ratio of each cluster over
redshift. Regression analysis for both ratios indicates that there is a positive correlation between
the axial ratio and redshift. Additionally, one ought to notice the high-density regions of clusters at
high redshift (near z ≈ 1.2 and z ≈ 1.4. It is odd to suddenly find a much larger number of clusters
at high redshifts, which raises the question of how certain we are of their accuracy (i.e: are they
actually at these redshift values?).

Figures 3.9a and 3.9b show scatter plots of α vs. z, and αw vs. z respectively. In

order to investigate the evolution of the elongation of clusters over time, we split the

data into two sets: Low-z (z < 0.6), and high-z (z > 0.6). Figure 3.10a shows a

histogram of the two data sets for αw, and Figure 3.10b shows the same data as a

cumulative distribution function. The Kolmogorov-Smirnov test can be used to

determine if two data sets are drawn from the same sample. Application of the

Kolmogorov-Smirnov test in the case of α gives: statistic = 0.0939, p-value =

6.7187× 10−21, while application of the test for αw gives: statistic = 0.0623, p-value

= 2.0153× 10−09. In both cases, the p-values are exceptionally small, and far smaller

than 0.01 (for a 99% confidence level). As a result, the difference between the low-z

distribution and the high-z distribution is statistically significant. This indicates

that the elongation of clusters varies over time, with α/αw decreasing over time.

3.4 Statistical Modelling of Clusters

As a brief exercise to better understand the statistics behind α and φ, we carried

out a number of exercises to observe how these values would change given the

sample size of the cluster.

To begin with, we randomly selected a set number of points from a circle, which has

a true value of α = 1. We then calculated α and φ values for this theoretical cluster,
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Figure 3.10: (Left) This figure shows a histogram of frequencies for αw when the data is divided
into low-z and high-z (cut-off, z = 0.6). (Right) This figure shows the same data represented as
a normalised cumulative function. These graphs indicate that there is a difference between the
distribution of αw for the two redshift groups.

before repeating this process a large number of times (10000). Figure 3.11 shows the

results of plotting the distribution of α and φ for clusters of sample size 20, 25, and

30. As expected, as the sample size increases, the alpha value tends towards 1, but

sees a reduced standard deviation when the sample size is increased, and the phi

value is flat overall. One should note that the alpha distribution does not act as a

normal distribution in this case. This is because the alpha distribution is bounded

at its expected value of 1. As a result, the error from sampling pushes the average

alpha value down. As a more clear demonstration of the value of alpha tending to 1,

Figure 3.12 shows the alpha distribution for 150 trials with clusters of a sample size

of 20000. The phi distribution is uniform (albeit with a large degree of noise due to

fine binning) because there is no preferential angle when randomly selecting clusters

in a circle.
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Figure 3.11: (Left) The graph shows the distributions of alpha values for a theoretical circular
cluster for varying cluster sizes. (Right) The graph shows the same information, but for phi values (in
radians) instead. (Trials = 10000). The alpha graphs show a distribution that is close to Gaussian
(but with some skew), whereas the phi graph while noisy has a uniform distribution, with both
distributions expected. For the sake of clarity, only the results for a sample size of 30 have been
plotted for the phi modelling, however, the graph is also flat overall for the sample sizes 20 and 25
as well.

Figure 3.12: This figure demonstrates that as the sample size goes up, the value of α tends towards
1. (Trials = 150)

This modelling test was repeated, this time picking from an ellipse in which the

semi-major axis was twice as long as the semi-minor axis, resulting in alpha having

an expected value of 0.5. Figure 3.13 shows the results of this test.
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Figure 3.13: These figures show the alpha and phi distributions for elliptical sampling (trials =
10000). The alpha graphs show a distribution that is close to Gaussian (but with some skew). In
addition, the phi graph is also Gaussian because there is now a preferred direction due to the shape
of the ellipse being orientated with the semi-major axis along the x-axis (which contains the half-line
θ = 0).

As shown, as the sample size increases, the alpha distribution tends towards the true

value of 0.5, while the standard deviation of the values in both α and φ decreases.

The results of this test are significant in understanding the effects of shot noise on

the data set. Shot noise can dominate when the sample size is sufficiently small so

that uncertainties due to the Poisson distribution become significant. From this, it

is recommend that we impose a minimum cluster size to conduct any analysis.

3.5 BCG Parametrisation

The next stage is to analyse the shape of the BCG. To do this, we use the CModel

method as detailed in Bosch et al. (2017). The CModel method works by first

fitting an ellipse to the image of a galaxy with a Sersic Model which is defined as:

lnI(R) = lnI0 − kR
1
n (3.15)

The Sersic model thus gives a relationship between the intensity of a galaxy, I, and

the distance from its centre, R. n is a parameter that may be varied to give

different profiles (and thus fit different galaxies); as n increases, the more the

intensity falls off with distance.

In this case, the CModel method begins with an n = 1 Sersic model (exponential),
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which is often a reasonable approximation for the disc component of spiral galaxies.

Next, it fits an ellipse with an n = 4 Sersic Model (de Vaucouleurs) which is a

reasonable approximation for elliptical galaxies. In both cases, the ellipse

parameters are kept free. Then, both models are fitted at the same time, allowing

only the two amplitudes to vary.

Let us define for the purposes of the CModel method, that A is the semi-major

radius of the galaxy, B is the semi-minor axis, and θ is the position angle. Then the

CModel method returns a parametrisation of (A, B, θ) by means of a symmetric

positive-definite 2x2 matrix Q, which in terms of the HSC data set should be

considered as:

Q =

[
e11 e12

e12 e22

]
(3.16)

As detailed in Bosch et al. (2017), the CModel matrices can be diagonalised as:

Q =

[
cos(θ) sin(θ)

−sin(θ) cos(θ)

][
A2 0

0 B2

][
cos(θ) −sin(θ)

sin(θ) cos(θ)

]
(3.17)

Noting that A2 and B2 then correspond to the eigenvalues of the CModel matrix, it

is then trivial to calculate αBCG = A
B

where A < B. Furthermore, it is clear that the

eigenvectors of Q form the columns of the rotation vectors, allowing one to calculate

φBCG. It should be noted that in this case the cluster angle and the BCG angle are

defined with respect to different θ = 0 half-lines, and thus it is necessary to correct

for this. For the sake of clarity, from now on αcluster = αw and φcluster = φw.
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Figure 3.14: This contour plot shows αBCG against apparent magnitude. One should note that
the vast majority of the elongated BCGs are at fainter magnitudes.

Figure 3.15: This contour plot shows αBCG against αcluster. There is no obvious correlation to be
seen here.
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Figure 3.17: This scatter plot shows φBCG against redshift.

Figure 3.16: This scatter plot shows αBCG values against redshift. Here we note that the most
elongated BCGs (i.e: BCGs with small α) tend to be at high redshift, which in turn tend to be
fainter.
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Figure 3.18: This scatter plot shows the φBCG value plotted against the cluster phi value. One
can see no obvious correlation between the angle of the BCG, and the angle of the cluster.

Figure 3.19: This shows a plot of the Stokes Parameter U of the BCG against that of the cluster.

3.6 Alignment

Following the convention established in Binggeli (1982) and Niederste-Ostholt et al.

(2010), we define the alignment of the BCG and its host cluster as:

∆φ ≡ |φBCG − φcluster| (3.18)
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and adopt their criteria that a cluster is considered to be aligned when ∆φ ≤ 30o.

Figure 3.20: (Left) This histogram shows the alignment of the clusters with the BCG. This
histogram is for the unfiltered data set (i.e: All 13373 clusters). The histogram is relatively flat,
with no alignment apparent. (Right) A scatter graph of the alignment angle against redshift. There
is no noticeable correlation to be seen in this graph either.

Figure 3.21: This shows the data represented as a normalised cumulative function. These graphs
indicate that there is a negligible difference between the φ values at low and high redshift.

We begin by plotting a histogram of the alignments in Figure 3.20a for all of the

data points. As shown, this graph is relatively flat and suggests no tendency for any

type of alignment. This is further exemplified by the scatter graph shown in Figure

3.20b.

Application of the Kolmogorov-Smirnov test in the case of φw gives: statistic =

0.0169, p-value = 0.4296. The p-value is far higher than 0.1 (for 90% CL). As a
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result, the difference between the low-z distribution and the high-z distribution is

not statistically significant in this case (see Figure 3.21).

We then begin to select for clusters that are better for data analysis. We apply a

strict criterion that the sample size of each cluster must be greater than 30 for use,

α < 0.8 so that the cluster is not too round (so that the orientation is well-defined),

and also that the redshift must be less than 0.8 to minimise the risk that we are

looking at clusters with incorrect redshift values. This analysis is based in part

upon viewing the histograms below (Figures 3.22 to 3.24).

Figure 3.22: This is a histogram of the redshift of the clusters. As seen, a significant number of
the clusters are at high redshift, with the modal bin being 1.3 < z < 1.4. There is some debate as to
whether the objects detected at these redshifts by HSC are actually at these redshifts, particularly
given that the correlation between photometric and spectroscopic redshifts at higher redshifts. It
is for this reason that we choose to deselect high-redshift clusters, to see if that significantly affects
the histogram and correlation between alignment and redshift found.
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Figure 3.23: This is a histogram of the values of αcluster. As discussed earlier, the more rounded
a cluster/BCG is, the more uncertainty there is in defining its angle. This histogram shows that we
can deselect clusters with αw > 0.8, and still retain the majority of our sample.

Figure 3.24: This is a histogram of the cluster size. The higher the sample size of a cluster, the
lower the uncertainty of the α and φ values. From this, we can deselect clusters of size ≤ 30, and
still retain most of our sample.

Upon the application of these selection criteria, Figure 3.25 shows the new

histogram, as well as the scatter plot for the alignment against redshift. As shown,

there is no notable correlation between the alignment of the BCG and the cluster,

and the redshift of these objects.
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Figure 3.25: (Left) This histogram shows the alignment of the clusters with the BCG. This
histogram is for the filtered data set. Again, there is no notable alignment. (Right) A scatter graph
of the alignment angle against redshift, with no noticeable correlation.

Figure 3.26: This shows the data represented as a normalised cumulative function. These graphs
indicate that there is a negligible difference between the φ values at low and high redshift, although
it appears more significant than without the selection cuts.

Application of the Kolmogorov-Smirnov test in the case of φw gives: statistic =

0.0327, p-value = 0.2772. The p-value is higher than 0.1 (for 90% CL). As a result,

the difference between the low-z distribution and the high-z distribution is not

statistically significant in this case, although it is an improvement compared to the

data without the selection criteria (see Figure 3.26).
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3.7 BCG Dominance

Another issue investigated in the Niederste-Ostholt et al. (2010) paper is the effect

of BCG dominance with alignment. Both Kim et al. (2002) and Niederste-Ostholt

et al. (2010) argue that it is worth investigating a connection between dominance

and alignment because the method by which a BCG becomes more dominant could

be connected to the method by which alignment is expected to occur. Following

that paper, we define a measure of the dominance following the convention in

Tremaine & Richstone (1977):

dom = m1 −
m2 +m3

2
(3.19)

i.e: we define dominance as the difference between the magnitude of the BCG, and

the average magnitude of the second and third brightest galaxies. We are

specifically using the i-band magnitudes for this calculation, for the reason that the

i-band has the highest signal-to-noise ratio, as well as the best seeing. Noting then

that by the definition of the magnitude system used that m1 < m2 < m3, then

dom < 0 by definition.

Figure 3.27: This is a histogram showing the measure of dominance. All values here are less than
zero, precisely as expected.

Then, the histogram below shows the dominance with respect to redshift.
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Figure 3.28: This scatter graph plots the relationship between BCG dominance and alignment.
There is no obvious relationship between the two variables seen in this graph.

We note that there appears to be no correlation between alignment and dominance,

although further work is recommended to further investigate the relationship

between dominance and other variables. It is recommended that once the results on

the alignments of the BCGs and their host clusters has been confirmed, then the

effect of dominance can be further investigated.
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Chapter 4

Conclusions

From this research a number of conclusions may be drawn. Firstly, we have shown

that there is a statistically significant difference regarding the axial ratio of clusters

between clusters of low-z and clusters of high-z.

However, the Binggeli effect has not been demonstrated in this paper; that is to say

that the alignment of a BCG and its cluster appears not to have a redshift

dependence. This is true even when various restrictions are placed on the clusters,

such as ensuring the clusters are not too round so that uncertainty in φ is reduced,

ensuring that the sample size is sufficiently high enough so that it is less likely that

individual galaxies heavily distort the shape and orientation of the cluster, and

removing very high-z clusters as a precaution since there is uncertainty as to

whether these redshifts are accurate. There is additionally no correlation between

dominance and alignment, although this is likely related to the absence of the

Binggeli effect.

This result is highly surprising given the general consensus in the literature that the

Binggeli effect exists, and its demonstration in recent papers (such as

Niederste-Ostholt et al. (2010) that used a high number of clusters. In addition,

this would also go against various theoretical models and cosmological simulations

that favour the Binggeli effect. This suggests then that either there have been

fundamental issues in these other papers, or there is a fundamental issue in this one.

For example, it is plausible that there is some part of my code that effectively

randomises the orientation or alignment angles, such as the angle corrections not
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working as anticipated.

It is evident that more work needs to be completed in order to verify the results

found in this paper. The next step in this project shall be to use the s19a v2

catalogue composed by Oguri which corrects for some issues regarding the high-z

clusters, though this is unlikely to significantly change the results of this paper

given that we exclude clusters with z > 0.8. Testing how the results change upon

additional fine-tuning of the selections may also be enlightening. An additional step

is to check if the Niederste-Ostholt et al. (2010) paper can be replicated using the

HSC data at 0.08 < z < 0.44, particularly the difference in alignment between low-z

(z < 0.22) and high-z (0.22 < z < 0.44).
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Appendix A

Definition of Ncor and w

The precise definitions of Ncor and w are given in Oguri et al. (2014). For

completeness, that information is presented here.

To begin with, Oguri et al. (2014) seeks to determine where clusters exist in space

using HSC data. Upon doing so, they then seek to quantify the probability that

each galaxy of the cluster is actually in the cluster. To begin, they consider

red-sequence galaxies (i.e: elliptical galaxies) because these are more likely to be

found in clusters. One should also note that photometric redshifts are best measured

for elliptical galaxies. To catalogue red-sequence galaxies, Oguri et al. (2014)

quantifies the likelihood of each galaxy being a red-sequence galaxy at redshift z by:

χ2 =

Nfil∑
i=1

(mi,obs −mi,SPS − δmi,resi)
2

σ2
mi,obs

+ σ2
mi,resi

+
(logz11 − logz′11)2

σ2
logz

(A.1)

where mi,obs is the observed magnitude in the i-band, δmi,resi is the error in

magnitude associated with the i-band, and mi,SPS is the magnitude associated with

the stellar population synthesis (SPS) model. This χ2 is effectively giving a rough

determination of z. Then:

dρν
dχ2

=
1

2
ν
2 Γ(ν

2
)
e−

χ2

2 (χ2)
ν
2
−1 (A.2)

with ν = Nfil − 1 (degrees of freedom)
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dρν
dχ2 gives the distribution in 3D space for determining the cluster. In effect, one

should think about the determination of clusters in terms of the 2D data set not

being 3D. HSC observes a number of galaxies at certain RA and DEC, but gives no

clear indication of the depth of the galaxy. As such, when one views a set of

galaxies that are close to one another in 2D space, it is possible that some of the

galaxies seen there are in the foreground or the background, such that the predicted

cluster is significantly different to what is expected. Thus Oguri et al. (2014) is

trying to quantify whether a galaxy is both in the right (2D) position and the right

redshift in relation to other galaxies, to see if they form a cluster.

This leads Oguri et al. (2014) to define a cluster member galaxy number parameter:

nν(χ
2) =

2
3ν
4

ν
ν
2U(ν

4
, 1
2
, ν

2

8
)

(A.3)

with U(a, b, x) being the Tricomi confluent hypergeometric function given by:

U(a, b, x) =
Γ(1− b)

Γ(a+ 1− b)

∞∑
n=0

a(n)zn

b(n)n!
+

Γ(b− 1)

Γ(a)
z1−b

∞∑
n=0

(a+ 1− b)(n)zn

(2− b)(n)n!
(A.4)

This parameter is normalised such that:

∫ ∞
0

nν(χ
2)
dρν
dχ2

dχ2 = 1 (A.5)

From this it is apparent that:

〈
Nmem∑
i=1

nν(χ
2)

〉
= Nmem

∫
nν(χ

2)
dρν
dχ2

dχ2 = Nmem (A.6)

Oguri et al. (2014) then selects galaxies based on their stellar mass range and their

distance from the proposed centre of the cluster. The stellar mass filter is based on

the fact that the luminosity of a galaxy is a function of its mass. If the luminosity of

a supposed galaxy is much dimmer or brighter than expected, then it makes it far
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less likely that it is actually a galaxy. As such, one should select galaxies within a

particular mass range. The selected mass filter is given as follows:

FM(M∗,in) = exp[−(
M∗,in
Mh

)4 − (
Ml

M∗,in
)4] (A.7)

with Mh = 1013M� and Ml = 1010.2M�.

Furthermore, it is noted that the probability of a galaxy being in a cluster falls off

from the centre of the cluster. To deal with this, a radius filter is given as follows:

FR(R) =
Γ[n/2, (R/R0)

2]− (R/R0)
ne−(R/R0)2

Γ(n/2, 0)
(A.8)

with the normalisation FR(0) = 1, and Oguri et al. (2014) setting the parameters as

n = 4 and R0 = 0.8h−1 Mpc.

From this, the richness map is as follows:

Nmem(θ, z) =
∑
i

nν(χ
2
i ; θi, z)FM(M∗,i)FR(DA|θi − θ|) (A.9)

The next part of the calculation deals with masking. A masked region is an area of

a survey in which there is no data, even though there has been a pointing to that

patch of sky. There are various reasons as to why masked regions occur. Some are

systematic, such as gaps between the CCDs on the telescope or gaps between

pointings, and can be corrected for. Other factors may include poor weather

conditions such as cloud factor. Thus the masking-corrected richness is given as:

Nmem(θ, z) =
∑
i

1

fmask
nν(χ

2
i ; θi, z)FM(M∗,i)× FR(DA|θi − θ|) (A.10)

where

fmask =

∫
FR>0

dθ′S(θ′)FR(DA|θ′ − θ|)∫
FR>0

dθ′FR(DA|θ′ − θ|)
(if FR(DA|θ′ − θ|) > 0) (A.11)
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fmask =

∫
FR<0

dθ′S(θ′)FR(DA|θ′ − θ|)∫
FR<0

dθ′FR(DA|θ′ − θ|)
(if FR(DA|θ′ − θ|) < 0) (A.12)

Oguri et al. (2014) imposes minimum values on the masking values. This is because

as the masking area increases, the richness estimate becomes more uncertain.

With the clusters now determined, Oguri et al. (2014) goes back and determines the

probability of each galaxy being a member of its cluster. Using a similar method as

before, Oguri et al. (2014) looks for peaks in the 3D richness map Nmem(θ, z).

There are several details here that can be glossed over here, but essentially a weight

is introduced to use high-significance cluster members to estimate a new cluster

redshift. Then the BCG of the cluster is estimated (based on the brightness of the

galaxy, whether it is a high significance galaxy in the cluster, and selected only if it

is a red sequence galaxy). Then, a new cluster redshift is calculated based on the

position of the BCG. The process of searching for the BCG and calculating

redshifts, etc, is repeated until the solution (of maximising the likelihood) converges.

From this, Oguri et al. (2014) assigns a weight factor as follows:

wmem = nν(χ
2
i )FM(M∗,i)FR(DA|θi − θBCG|) (A.13)

where DA|θi − θBCG| is the physical distance between the BCG and the galaxy.

Finally, with the richness correction factor fN(z) computed as:

fN(z) =

∫∞
M∗,cut(z)

dφ/dM∗,in(zref )dM∗,in∫∞
0
dφ/dM∗,in(zref )dM∗,in

(A.14)

where Oguri et al. (2014) set zref = 0.1.

Then the definition of Ncor as used in the catalogue becomes:

Ncor =
Nmem

fN(zcl)
(A.15)
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